拉斯维加斯赌城

图片

Chair of Computational Linguistics

Prof. Dr. Annemarie Friedrich

?

Computational Linguistics?is an interdisciplinary field that combines the study of linguistics and computer science to investigate the computational aspects of human language. It focuses on developing and applying computational models and algorithms to analyze, understand, and generate natural language.

?

Digital Humanities?(DH)?is an interdisciplinary field that combines traditional humanities disciplines, such as literature, history, philosophy, linguistics, and art, with digital technologies and computational methods. It aims to study, interpret, and analyze cultural and historical artifacts using digital tools and methodologies.

?

? University of Augsburg

The core research interests of my group are within computational linguistics and natural language processing with a focus on semantics and information extraction from text, i.e, natural language understanding ("Sprachverstehen"). I am particularly interested in annotation and corpus creation, as any machine-learning model depends on the underlying data.

?

In the?machine-learning?oriented part of my research,?I work on text mining for scientific text, syntactic and semantic parsing, and uncertainty in the context of deep learning for NLP. The?corpus-linguistic?part of my research has focused on?understanding and modeling interactions at the syntax-semantics interface, taking into account influences of discourse and pragmatics. Most of my past research is about the computational modeling of aspect, genericity, and modal verbs.

?

I am currently the vice president of the?German Society for Computational Linguistics?(GSCL), the scientific association in the German-speaking countries and regions for research, teaching and professional work in natural language processing. I am a member of the ACL Special Interest Group for Annotation (ACL SIGANN).

Group Members

Prof. Dr. Annemarie Friedrich
Professor
Lehrstuhl für Computerlinguistik
  • Phone: +49 821 598 4628
  • Email:
  • Room 1022 (Building BCM)
Sabrina Achberger
Team Assistant
Lehrstuhl für Computerlinguistik
  • Room 1023 (Building BCM)
Fabio Mariani
Wissenschaftlicher Mitarbeiter / Researcher
Lehrstuhl für Computerlinguistik
  • Room 1021 (Building BCM)
Hanna Schmück
Wissenschaftliche Mitarbeiterin / Researcher
Lehrstuhl für Computerlinguistik
  • Room 1025 (Building BCM)
Georg Hofmann
Doktorand / PhD Student
Lehrstuhl für Computerlinguistik
  • Room 1021 (Building BCM)

Alumni

  • Dr. Jakob Prange

Publications

?

OPAC:

2025 | 2024 | 2023

2025

Hanna Schmück, Michael Reder, Katrin Paula and Annemarie Friedrich. in press. A case study on annotating and analysing situation entity types in Reddit discussions on democracy.
BibTeX | RIS | URL

Paul Baker, Hanna Schmück and Yufang Qian. 2025. Automatic image tagging for corpus linguistics: a multimodal study of news representations of Islam. DOI: 10.1017/9781009581233
PDF | BibTeX | RIS | DOI

Yejin Jung, Dana Gablasova, Vaclav Brezina and Hanna Schmück. 2025. Developing a coding scheme for annotating opinion statements in L2 interactive spoken English with application for language teaching and assessment. DOI: 10.32714/ricl.12.02.07
PDF | BibTeX | RIS | DOI

Hanna Schmück. in press. Sarah Buschfeld, Patricia Ronan, Theresa Neumaier, Andreas Weilinghoff and Lisa Westermayer (eds.), Crossing boundaries through corpora: Innovative corpus approaches within and beyond linguistics (Studies in Corpus Linguistics 119). Amsterdam and Philadelphia: John Benjamins, 2024. Pp vi + 265. ISBN 9789027215949 [Book Review]. DOI: 10.1017/s1360674325100439
BibTeX | RIS | DOI

2024

Man Ho Ivy Wong and Jakob Prange. 2024. A Bayesian approach to (re)examining learning effects of cognitive linguistics–inspired instruction: a close replication of Wong, Zhao, and MacWhinney (2018). DOI: 10.1017/s0272263124000603
PDF | BibTeX | RIS | DOI

Steffen Kleinle, Jakob Prange and Annemarie Friedrich. 2024. OMoS-QA: a dataset for cross-lingual extractive question answering in a German migration context.
PDF | BibTeX | RIS | URL

Arcangelo Massari, Fabio Mariani, Ivan Heibi, Silvio Peroni and David Shotton. 2024. OpenCitations Meta. DOI: 10.1162/qss_a_00292
PDF | BibTeX | RIS | DOI

Fabio Mariani, Max Koss and Lynn Rother. 2024. People information in provenance data: biographical entity linking with Wikidata and ULAN. DOI: 10.31664/zu.2024.114.07
PDF | BibTeX | RIS | DOI

Hanna Schmück. 2024. Review of Dunn (2022): Natural Language Processing for Corpus Linguistics. Cambridge University Press. 84pp. [Book Review]. DOI: 10.1075/ijcl.00057.sch
PDF | BibTeX | RIS | DOI

2023

Annemarie Friedrich, Nianwen Xue and Alexis Palmer. 2023. A kind introduction to lexical and grammatical aspect, with a survey of computational approaches. DOI: 10.18653/v1/2023.eacl-main.44
PDF | BibTeX | RIS | DOI

Sophie Henning, William Beluch, Alexander Fraser and Annemarie Friedrich. 2023. A survey of methods for addressing class imbalance in deep-learning based natural language processing. DOI: 10.18653/v1/2023.eacl-main.38
PDF | BibTeX | RIS | DOI

Jakob Prange and Emmanuele Chersoni. 2023. Empirical sufficiency lower bounds for language modeling with locally-bootstrapped semantic structures. DOI: 10.18653/v1/2023.starsem-1.40
PDF | BibTeX | RIS | DOI

Lynn Rother, Fabio Mariani and Max Koss. 2023. Hidden value: provenance as a source for economic and social history. DOI: 10.1515/jbwg-2023-0005
PDF | BibTeX | RIS | DOI

2023. LAW 2023: The 17th Linguistic Annotation Workshop (LAW-XVII) @ ACL 2023, proceedings of the workshop, July 13, 2023.
BibTeX | RIS | URL

Lynn Rother, Fabio Mariani and Max Koss. 2023. Linking (in)completeness: a collaborative approach to representing people in art provenance data. DOI: 10.5281/zenodo.8107371
PDF | BibTeX | RIS | DOI

Jakob Prange and Man Ho Ivy Wong. 2023. Reanalyzing L2 preposition learning with Bayesian mixed effects and a pretrained language model. DOI: 10.18653/v1/2023.acl-long.712
PDF | BibTeX | RIS | DOI

Fabio Mariani, Lynn Rother and Max Koss. 2023. Teaching provenance to AI: an annotation scheme for museum data. DOI: 10.14361/9783839467107-014
PDF | BibTeX | RIS | DOI

Search